Relative velocity -

The relative velocity of one object with respect to another is the velocity with which one object moves with respect to another object. When two objects A and B are moving with different velocities, then the velocity of one object A with respect to another object B is called relative velocity of object A with respect to object B, hence relative velocity is defined as the time rate of change of relative position of one object with respect to another.

Expression for the relative velocities - Suppose two objects A and B moving with uniform velocities V_{A} and V_{B} respectively along parallel straight line path in the
(i) Same direction (I.e. angle between them is 0°) then,

Relative velocity of A with respect to $B=V_{A B}=V_{A}-V_{B}$.

(ii) Opposite direction (I.e. angle between them is 180°) then,

Relative velocity of A with respect to $B=V_{A}+V_{B}$.

Relative velocity of A with respect to $B=V_{A}-\left(-V_{B}\right)=V_{A}+V_{B}$

Relative velocity objects A and B when angle between them is θ - If angle between their velocities are θ then relative velocity between them can be find with the help of substraction of vectors .

Let angle between V_{A} and V_{B} is θ (as shown in figure)

Here substraction of vectors (relative velocity) $=\mathrm{V}_{\mathrm{AB}}=\left(\mathrm{V}_{\mathrm{A}}{ }^{2}+\mathrm{V}_{\mathrm{B}}{ }^{2}-2 \mathrm{~V}_{\mathrm{A}} \mathrm{V}_{\mathrm{B}} \cos \theta\right)^{1 / 2}$.
And direction of the relative velocity will be given as

$$
\operatorname{Tan} \beta=\mathrm{V}_{\mathrm{B}} \sin \theta / \mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}} \cos \theta .
$$

