Magnetism and matter

percentage error:

1. With the tangent galvanometer it is desirable to have a deflection near 45°; then the

(a) is less in the reading of deflection						
	(b) is negligible in the reading of deflection					
	(c) is less in the measurement of current					
	(d) is large in the measurement of current					
2.	The sensitivity of a moving coil galvanometer depends on:					
	(a) the angle of deflection					
	(b) the earth's magnetic field					
	(c) torsional constant of the spring					
	(d) the moment of inertia of the coil					
3.	An ammeter can be converted into a voltmeter by connecting:					
	(a) a high resistance in series					
	(b) a low resistance in parallel					
	(c) a low resistance in series					
	(d) a high resistance in parallel					
4.	In a moving coil galvanometer the deflection of the coil θ is related to the electric					
	current / by the relation:					
	(a) $l \propto \tan \theta$		(c) $I \propto \theta^2$	(d) / œ √θ		
5.	A voltmeter of range 2V and resistance 300 Ω cannot be converted into ammeter of					
	range:					
	(a) 1 A	(b) 1 mA	(c) 100 mA	(d) 10 mA		
6.	The effect due to uniform magnetic field on a freely suspended magnetic needle is as					
	follows:					
	(a) both torque and net force are present					
	(b) torque is present but no net force					
	(c) both torque and net force are absent					
	(d) net force is present but not torque					
7.	A voltmeter has a resistance of G ohm and range V volt. The value of resistance used					
	in series to convert it into voltmeter of range nV volt is:					
	(a) nG	(b) (n – 1)G	(c) G/n	(d) $G/(n-1)$		
8.	An ammeter has a resistance of G ohm and a range of <i>I</i> amp. The value of resistance					
	used in parallel to convert it into an ammeter of range nl amp is:					
	(a) nG	(b) (n – 1)G	(c) G/n	(d) $G/(n-1)$		
9.	To reduce the range of a voltmeter, its resistance need to be reduced. Which of the					
	following resistance when connected in parallel will convert it into a voltmeter of					
	range (V/n)?					
	(a) nR ₀	(b) $(n + 1)R_0$	(c) $(n-1)R_0$	(d) None of these		

10.A soft iron cylinder is used in a moving coil galvanometer because without it in							
galvanometer:							
(a) magnetic field will not be radial and strong							
(b) magnetic field will be radial but weak							
(c) magnetic field will be radial and strong							
(d) magnetic field will not be radial and weak							
11.The resistance of an ammeter is 13 $\boldsymbol{\Omega}$ and its scale is graduated for a current of 100 A.							
After an additional shunt has been connected it becomes possible to measure the							
current upto 750 A by this instrument. Find resistance of the shunt:							
(a) 8Ω (b) 6Ω (c) 4Ω (d) 2Ω							
12.An ammeter is obtained by shunting a 30 Ω galvanometer with a 30 Ω resistance.							
What additional shunt should be connected across it to double the range?							
(a) 15 Ω (b) 10 Ω (c) 5 Ω (d) None of these							
13.A galvanometer having a resistance of 8 Ω is shunted by a wire of resistance 2 Ω . If							
the total current is 1 amp, the part of it passing through the shunt will be:							
(a) 0.25 A (b) 0.8 A (c) 0.2 A (d) 0.5 A							
14.A moving coil galvanometer has a resistance of 900 Ω . In order to send only 10% of							
the main current through the galvanometer, the resistance of the required shunt is:							
(a) 0.9Ω (b) 100Ω (c) 405Ω (d) 90Ω							
15.A steel wire of length L has a magnetic moment M. It is then bent into a semi-circular							
are; the new magnetic moment will be:							
(a) M (b) $2M/\pi$ (c) M/L (d) $M_{\times}L$							
16.A thin bar magnet of length 2L is bent at the mid-point so that the angle between							
them is 60°. The new length of the magnet is:							
(a) V2L (b) V3L (c) 2L (d) L							
17.Two identical magnets each of moment M are kept at an angle of 60°, such that like							
poles are touching each other. The magnetic moment of the combination will be:							
(a) M (b) 2M (c) √2M (d) √3M							
18. Find the angle through which a magnet is to be rotated from rest position when it is							
suspended in a magnetic field so that it experiences half of the maximum couple:							
(a) 60° (b) 30° (c) 45° (d) 90°							
19. The susceptibility of a diamagnetic substance is:							
(a) infinite (c) small but negative							
(b) zero (d) small and positive							
20.An atom is paramagnetic if it has:							
(a) a magnetic moment							
(b) an electric dipole moment							
(c) no electric dipole moment							
(d) no magnetic moment							

21.A sample of dia	amagnetic substance w	hen placed near a perm	anent bar magnet is:					
(a) repelled aw	<i>r</i> ay							
(b) attracted to	(b) attracted towards							
(c) unaffected	(c) unaffected							
(d) attracted or repelled dependent on the size of the sample								
22.The magnetic r	moment of atomic neor	n is equal to:						
(a) zero	(b) μ _B /2	(c) μ _B	(d) $3\mu_B/2$					
23.If a magnetic is	s suspended at an angle	e of 30° to the magnetic	meridian, the dip					
needle makes	an angle of 45° with the	e horizontal. The real dip	o is:					
(a) tan ⁻¹ (√3/2)	(b) tan ⁻¹ (√3)	(c) tan ⁻¹ (√3/√2)	(d) tan ⁻¹ (2/√3)					
24.At a placed the	angle of dip is 30°. If t	he horizontal componer	nt of the earth's					
magnetic field	is H, then the total field	d intensity will be given	by:					
(a) H/2	(b) 2H/√3	(c) H√2	(d) H√3					
25. The ratio of vo	Itage sensitivity (Vs) and	d current sensitivity (Is)	of a moving coil					
galvanometer	is:							
(a) 1/G	(b) 1/G ²	(c) G	(d) G ²					
26.A current carry	ing small drop behaves	s like a small magnet. If <i>i</i>	A be its area and M its					
magnetic mom	nent, the current is the	loop will be:						
(a) M/A	(b) A/M	(c) MA	(d) A^2M					
27.The work done	e in deflecting a magnet	t of magnetic moment N	1 through an angle θ in a					
field of strengt	h H is:							
(a) MH(1-cos θ	(b) MH(1-sin θ)	(c) MH sin θ	(d) MH(1+cos θ)					
28.A neutral point	t is obtained at the cent	tre of a vertical circular	coil carrying current.					
The angle betw	veen the plane of the c	oil and the magnetic me	ridian is:					
(a) 0°	(b) 45°	(c) 60°	(d) 90°					
29.If horizontal ar	nd vertical components	of the earth's magnetic	field are equal at a					
certain place, t	then the angle of dip at	that place will be:						
(a) 90°	(b) 60°	(c) 45°	(d) 0°					
30.The ratio of ma	agnetic fields due to a s	mall bar magnet in the	endon position to that					
in broad-side o	on position for the same	e distance from it is:						
(a) 1 : 4	(b) 1:2	(c) 1:1	(d) 2:1					
31.A magnet of m	agnetic moment M is c	ut is into two equal part	s. The two parts are					
placed perpend	dicular to each other so	that their north poles t	ouch each other. The					
resultant magr	netic moment is:							
(a) √2M	(b) M/√2	(c) √3M	(d) M/√3					
32.The deflection	in moving coil galvanor	meter falls from 50 divis	ion to 10 division when					
a shunt of 12 Ω is applied. The resistance of galvanometer coil is:								
(a) 24 Ω	(b) 12 Ω	(c) 50 Ω	(d) 48 Ω					
33.A hydrogen atom is paramagnetic. A hydrogen molecule is:								
(a) diamagneti	С	(c) ferromagnetic						
(b) paramagne	tic	(d) none of these						

magnet need	le is:						
(a) 90°	(b) 45°	(c) 30°	(d) 60°				
35. Two magnetic isolated north poles each of strength m ampere- metre are placed one							
at each of two vertices of an equilateral triangle of side a. The resultant magnetic							
induction at third vertex is:							
(a) $\mu_0/4\pi$ (m/	a^2) (b) $\mu_0/4\pi$ $\sqrt{2}$ $\sqrt{2}$	a^2 (c) $\mu_0/4\pi \sqrt{3}$ m/ a^2	(d) $\mu_0/4\pi$ m/a ²				

34. The accuracy of a tangent galvanometer is maximum when angle of deflection of